Pesquisar Este Blog Clique Aqui Ó

Ganhar Dinheiro



domingo, 29 de abril de 2012

Imagens Legais



























Primeiro você olha o tamanho...

Primeiro você olha o tamanho, depois você olha a grossura, em seguida você põe a mão pra sentir, só aí você toma coragem pra sentar em cima, pra ver se é gostoso o movimento de sobe e desse. Viu como é fácil escolher um colchão?

Mente suja hein! kkkk

CABINE DE COMANDO DE UM ÔNIBUS ESPACIAL


Já se perguntou como deve ser o interior da cabine de um ônibus espacial?
Esse é o "modesto" painel de controle do ônibus espacial Endeavor da NASA. A construção do Endeavour começou em 1987 com o objetivo de substituir o Challenger, destruído durante um acidente em 1986, sendo lançada pela primeira vez em 1992.

UM DIABO DIFERENTE (COMPLETO)

quarta-feira, 25 de abril de 2012

Velocidade da Luz

Histórico

Os antigos pensavam que a luz tinha velocidade infinita, achando que ela poderia percorrer qualquer distância, por maior que fosse, sem gastar nenhum tempo para isso.
Talvez o primeiro a tentar medir a velocidade da luz tenha sido Galileu. Tentou mas não conseguiu, com os meios que dispunha, porque a luz é rápida demais.
No tempo que você leva para piscar os olhos ela já percorreu a distância do Oiapoque ao Xuí.
Hoje todo mundo sabe que a velocidade da luz é aproximadamente 300.000 quilômetros por segundo.
Um valor muito bem conhecido e certamente um dos melhor determinado em todo campo de fenômenos físicos é a velocidade com que a luz se propaga. Além disso, esta constante é uma das de maior importância em toda teoria física. A obtenção da velocidade da luz teoricamente, é feita a partir do mesmo conceito básico que se usa para chegar até a velocidade de propagaçào de uma onda mecânica, ou seja, aceitando que a luz é uma onda. A diferença é que a luz não necessita de um meio material para se propagar, embora ela também se propague em meios materiais.

As primeiras medidas da velocidade da luz

A história da busca de seu valor é natruralmente tão velha quanto a própria ciência. Empédocles foi o primeiro a sugerir que a luz requeria provavelmente um tempo finito para passar entre dois pontos. Galileu foi o primeiro a propor um método para tentar medi-la. A sugestão de Galileu era colocar, o mais afastado possível um do outro, dois homens com lanternas que podiam acender e apagar. Um deles A, descobria sua lanterna, de modo que o outro B, pudesse vê-la. Por sua vez B, descobria a sua no instante em que ele visse a luz de A, e A media o tempo entre descobrir sua lanterna e enchergar a luz de B. Certamente a experiência falhou porque o tempo de reação dos dois indivíduos era grande e também havia variações maiores do que o tempo necessário para a luz percorrer os poucos quilômetros entre os dois observadores, que é de 10-5 s.

Medidas Astronômicas da velocidade da luz

Em 1675 Rømer, astrônomo dinamarquês, fez a primeira medida utilizando uma distância astronômica em vez de terrestre. Ele observou que os eclipses do primeiro satélite de Júpiter ocorriam em intervalos ligeiramente menores menores à medida que a terra se aproximava de Júpiter, de C para A; do que quando ele se afastava de Jupiter, de A para C.
Desde que o tempo entre os eclipses, tirada a média durante um ano, era bem constante (apesar do ganho total de 16’26” em 6 meses, seguido de uma perda do mesmo valor por mais 6 meses), Rømer interpretou corretamente o ganho ou a perda como sendo o tempo necessário para os sinais luminosos do eclipse atravessarem o diâmetro da órbita terrestre.
Então, como o diâmetro médio da terra é de 302,4 x 106 km, e o tempo de 986 s, ele calculou a velocidade da luz como sendo de 307.200 km/s.
Método de Roemer para a medida da velocidade da luz
Método de Roemer para a medida da velocidade da luz. O intervalo de tempo entre os eclipses da lua de Júpiter parece maior quando a terra desloca de A para C do que quando ela se move de C para A. A diferença se deve ao tempo que a luz leva para percorrer a distância coberta pela Terra, durante um período de revolução do satélite.
Uma Segunda determinação apareceu por um método completamente diferente, feita em 1729 pelo astrônomo inglês Bradley.
Ele evidenciou que a posição de uma estrela, observada de uma direção em ângulo reto com o movimento orbital da terra, é deslocada de sua verdadeira posição por um ângulo de 20,44 segundos de arco, que é chamado de ângulo de aberração, e resulta do fato de que enquanto a luz esta caminhando para o tubo do telescópio, este é deslocado pelo movimento da terra, de uma distância não totalmente desprezível.
Nota-se que tg a = v/c onde v é a velocidade da terra e c é a velocidade da luz.
Se D é o diâmetro da órbita terrestre e s é o número de segundos em um ano, então:
v = p D/ s            e            c = p D/ s tg a
Experimento de Bradley
Experimento de Bradley para a determinação da velocidade da luz por berração

Medidas Terrestres da velocidade da luz

O primeiro método de laboratório para medida da velocidade da luz em distâncias terrestres foi feito pelo francês Fizeau em 1849.
Ele usou uma grande roda dentada girando rapidamente em frente a uma fonte brilhante que funcionava da seguinte forma:
A luz emitida por uma fonte S, atravessa a lente convergente L1, é refletida pelo espelho semi-transparente M1 e forma, no espaço, em S1 uma imagem da fonte.
O espelho M1 foi coberto com uma película muito fina dando a ele uma propriedade de ser semi-espelhado, isto é a metade da luz que chega nele é refletida e a outra metade é transmitida. A luz, proveniente da imagem S1, penetra na lente L2 e emerge do lado oposto com um feixe paralelo. Após passar pela lente L3, é refletida pelo espelho M de volta, em sentido contrário, mas a sua direção original.
No experimento de Fizeau, a distância d entre a imagem S1 e o espelho M foi de 8.630 m. Quando a luz atinge, novamente, o espelho M1 parte dela é transmitida, indo até o olho do observador, após atravessar a lente convergente L4.
Assim, o observador verá uma imagem da fonte S1 formada por luz que terá percorrido uma distância 2d, de ida e volta entre a roda e o espelho M.
Experimento de Fizeau
Experimento de Fizeau
É obvio que o método de Fizeau era certamente uma adaptação altamente mecanizada do método proposto por Galileu. Na experiência de Fizeau a luz, durante o percurso discutido acima, passa por uma roda dentada R1. Se esta roda gira lentamente, a imagem vista pelo observador será intermitente. A medida que sua velocidade aumenta a imagem formada no olho do observador diminui as interrupções. Contudo, podemos ir aumentando a freqüência de rotação da roda até que nenhuma imagem seja formada no olho do observador. Isto ocorrerá quando o tempo gasto pela luz para percorrer a distância 2d for igual ao tempo gasto para girar a fenda de um ângulo equivalente ao ângulo entre dois dentes consecutivos da roda dentada. Sendo isto possível, podemos encontrar uma relação matemática para calcular a velocidade da luz, isto é, o tempo t gasto para a luz percorrer a distância 2d é igual a t = 2d/c. Por outro lado, o tempo t gasto para girar a roda dentada de um ângulo a , pode ser calculado usando a frequência angular da roda; comparando as duas equações para o tempo, temos que 2d/c = 1/2NV sendo N o número de dentes e se a roda dá V voltas por segundo. Como conhecemos os valores de d, a e v, podemos facilmente calcular a velocidade da luz. No primeiro experimento realizado por Fizeau, a roda tinha 720 dentes, v = 12,609 rps, d = 8.630m e o ângulo a = 1/1.440 de rotação.
Com isto ele obteve, para a velocidade da luz, o valor de c = 313.300 km/s. Numa segunda tentativa ele melhorou os seus resultados, encontrando c = 301.400 km/s, resultados estes considerados, na época, de grande precisão.
Cornu, que melhorou os detalhes de Fizeau, obteve em 1876 um valor que corrigido era de 299.950 km/s (no vácuo).

Qual é exatamente a velocidade da luz?

Uma medida da velocidade da luz usando lasers, feita pelo Bureau Nacional de Padrões dos Estados Unidos, em 1983, obteve como resultado, 299.792,4586 Km/s, com incerteza de mais ou menos 0,0003 Km/s.
A partir do ano de 1983, por decisão dos órgãos científicos internacionais, a velocidade da luz passou a ser considerada uma constante universal com valor bem determinado, exatamente igual a:

C = 299.792.458 m/s

Ou seja, quase 300.000 km por segundo.
Fazendo as contas:
300.000 x 60 segundos = 18.000.000 km/minuto (18 milhões)
18.000.000 x 60 minutos = 1.080.000.000 km/hora (1 bilhão)
1.080.000.000 x 24 horas = 25.920.000.000 km/dia (25 bilhões)
25.920.000.000 x 365 dias = 9.460.800.000.000 km/ano (9 trilhões)

Relatividade especial e a velocidade da luz

De acordo com a mecânica Newtoniana, não há, em princípio, um limite superior para a velocidade imposta a um corpo. Imaginemos um corpo constantemente sujeito à aceleração da gravidade (g = 9,8 m/s2).
Partindo do repouso, após um ano sua velocidade seria igual à velocidade da luz no vácuo, e após dois anos, seria o dobro desta velocidade. assim a velocidade atingida parece ser ilimitada. Mas, quando tentamos obter velocidades tão altas quanto a da luz, observamos um desvio da mecânica newtoniana, sendo esta não adequada à todas as situações.
No contexto da Relatividade Especial, a velocidade da luz é o limite absoluto da velocidade em nosso universo para qualquer objeto que contenha massa real. Isto ocorre porque quando um corpo se aproxima da velocidade da luz, mais e mais da energia fornecida ao corpo aparece sob a forma de massa adicional.
Assim, quanto mais rápido o corpo, mais a energia cinética envolvida no movimento tem como efeito principal causar um aumento em sua massa-energia em lugar de velocidade, sendo que a massa-energia vai ao infinito nos limites da velocidade da luz.
A síntese disto está expresso em uma das mais importantes equações da física, proposta por Albert Einstein:
Albert Einstein
Albert Einstein
E = m*c2
"A velocidade da luz em qualquer sistema de referência tem o mesmo valor, independente do movimento do referencial". 2o Postulado da Teoria da Relatividade Especial de Albert Einstein

Velocidade da Luz no televisor

Objetivo
Medir a velocidade de uma onda eletromagnética usando um televisor.
Descrição
Ligue um televisor, de preferência preto-e-branco, dos antigos, com antena interna e dirija essa antena na direção da antena da emissora. Coloque uma placa grande de metal na mesma linha que as antenas, ficando a antena interna entre a placa e a antena da emissora. Vá afastando a placa, mantendo-a perpendicular à linha das antenas, e observe a imagem. Para uma dada distância a imagem se deteriora visivelmente. Afastando um pouco mais, a imagem volta melhorar.
Afastando mais um pouco, novamente, a imagem piora. Anote as distâncias em que a imagem se deteriora. O comprimento de onda do sinal da emissora será dado por 2xL/n, onde L é a distância entre a placa e a antena interna; n é ordem da posição onde a imagem fica ruim, isto é, n=0,1,2, etc. Com esses valores, acha-se uma média para o comprimento de onda. Multiplicando esse comprimento de onda pela freqüência do sinal da emissora, obtém-se a velocidade da onda, que é a velocidade da luz.
Análise
O comprimento de onda dos sinais de televisão é sempre da ordem de poucos metros. Sendo L esse comprimento, a velocidade da onda é dada por c = Lf, onde f é a frequência da onda.
O televisor recebe dois sinais: o sinal vindo da emissora e o sinal refletido na placa de metal. Quando a distância entre a antena interna e a placa é um número inteiro de meios comprimentos de onda dá-se interferência destrutiva e a imagem se deteriora.
Material
Televisor, de preferência velho e preto e branco. Televisores coloridos mais modernos costumam ter um circuito que ajusta a freqüência de sintonia automaticamente. Isso é muito bom para o telespectador normal, mas, péssimo para sua experiência pois você quer exatamente deteriorar a imagem por interferência. Placa metálica razoavelmente grande (1 metro quadrado ou mais).Antena interna.
Dicas
A placa metálica pode ser uma meia-folha de compensado coberta de papel alumínio. Use o ajuste fino do televisor para dessintonizar ligeiramente a recepção do sinal. Isso facilita a determinação dos pontos de mínimo evitando que o circuito de sintonia automática atrapalhe a observaç Obtenha o valor da frequência da emissora telefonando para lá e perguntando. Faça isso com mais de uma emissora para medir com mais de um valor de frequência. Mas, não esqueça que cada emissora pode ter uma posição diferente de suas antenas.

Velocidade da Luz

A quarta dimensão

Em primeiro lugar teremos a teoria especial da relatividade de Einstein.
A importância central dessa teoria é que a passagem do tempo não é absoluta. A velocidade com que o tempo passa é diferente para uma pessoa “em repouso” e para a outra pessoa que está se movendo em grande velocidade em relação àquela pessoa em repouso, apesar de que para cada uma delas o tempo seja o tempo real, isto é, normal. Com a descoberta da relatividade descobrimos que o tempo e o espaço não são separados. A relatividade espacial, mostrou que os princípios de Newton não são válidos para condições extremas.
Galileu e Newton também estudaram a “relatividade”, mas na época seu conceito era diferente. Na relatividade galileana mostram a necessidade de um referencial para descrever o movimento de um objeto.
Aproximando – se o fim do século XIX, os fatos que eram descobertos pareciam contradizer ou não ser abordados pelas leis físicas da época.
O físico escocês James Clerk Maxwell, em 1861 e 1865, publicou seus dois célebres ensaios sobre um campo eletromagnético invisível que incluía um amplo conjunto de ondas. Ele mostrava que as ondas luminosas são simplesmente a porção visível desse espectro e que todas as ondas moviam – se a aproximadamente 300 mil quilômetros por segundo. Einstein supôs que essas velocidades devem ser uma constante e não uma velocidade relativa.
A velocidade do observador não deveria fazer diferença na velocidade dessas ondas. Ou as equações de Maxwell eram incorretas ou era incorreta a mecânica de Newton. Einstein em sua teoria especial, afirma a exatidão das equações de Maxwell e a inadequação da física de Newton para explicar o espaço e o tempo quando um objeto ou um observador se aproxima da velocidade da luz. Mas apesar de Maxwell ter demonstrado que a luz é um fenômeno eletromagnético a maioria dos físicos continuou a acreditar em uma espécie de éter que conduziria as ondas luminosas.
Os experimentos de Michelson – Morley de 1887 destinavam – se a confirmar a existência do éter. Eles tentavam prová – la demonstrando a diferença do tempo que luz demoraria para viajar a noventa graus daquela direção. Nesse ano Michelson e Morley repetiram os experimentos anteriores de Michelson e obtiveram o mesmo resultado, ou seja, não detectaram a presença do éter.
A teoria especial da relatividade aplica – se apenas à relação entre dois objetos, quando um se move em relação ao outro ou se afasta do outro em grande velocidade. Se um objeto ou observador está em repouso em relação a outro objeto ou observador que se move em grande velocidade, este movimento do segundo objeto ou observador em relação ao primeiro resulta em uma diferença na passagem do tempo para cada observador, conforme ela é medida pelo outro.
A teoria de Einstein quando lidando – se com observadores e objetos que se movem um em relação ao outro com velocidades superiores a aproximadamente a metade da velocidade da luz é a única maneira correta de se obter o resultado correto. Quando qualquer matéria atinge uma velocidade próxima a metade da velocidade da luz, o efeito sobre o tempo passa a ser cada vez mais marcante, pois há um efeito crescente e muito mais evidente da velocidade sobre os intervalos de tempo. Essa idéia de que o tempo pode verdadeiramente mudar e é uma função da velocidade contraria totalmente nossa experiência cotidiana.
A matéria submetida a essas altas velocidades não sofrem alterações físicas, mas se examinarmos as características físicas da própria matéria, o conceito de relatividade torna – se ainda mais claro. Imaginando um objeto dentro de uma nave espacial, como por exemplo um átomo de hidrogênio e tendo também outro átomo idêntico sobre a superfície da Terra. Se cada pessoa possuísse um equipamento capaz de simultaneamente ou de algum modo medir e registrar o número de órbitas que cada um dos elétrons completassem em um certo período de tempo, o verdadeiro número de órbitas seria diferente para os dois átomos. O elétron do átomo da nave espacial é mais lento que a do da Terra. Ambas as pessoas poderiam ver essa diferença relativa porque seu equipamento seria condizente com as mensurações.
A Segunda observação a respeito do efeito físico do movimento em alta velocidade é o encolhimento da matéria na direção do movimento. Assim, o comprimento de uma régua de 30 centímetros para um observador que meça essa régua que passa por ele perto da velocidade da luz a própria régua parecerá ter encolhido na direção do movimento.
Durante o processo de desenvolvimento da teoria especial Einstein descobriu a mais famosa equação da ciência:

E = mc²

Essa equação reflete a compreensão de Einstein de que a massa inerte é simplesmente energia latente. Nunca antes se percebera ou se reconhecera que a massa e a energia são simplesmente e precisamente os dois lados da mesma equação. A massa do átomo aumenta segundo o fator relativístico à medida que sua velocidade se aproxima da velocidade da luz.
Nos 10 anos seguintes à publicação de seu artigo sobre a teoria da relatividade especial, Einstein expandiu essa teoria para a teoria geral da relatividade. A teoria geral explica a gravidade além da física newtoniana. Einstein esclareceu por que a matéria causa a gravidade. Enquanto a teoria especial limita – se a referenciais que se aproximam ou se afastam em linha reta em do outro com velocidade constante, a teoria geral fornece uma fórmula para a relação da matéria por todo o espaço movendo – se em qualquer direção, com ou sem aceleração.
Entre as principais previsões derivadas da teoria geral incluem – se as seguintes:
1) Toda radiação eletromagnética (inclusive a luz) é defletida pela força gravitacional.
2) A órbita de Mercúrio desvia – se da órbita calculada pela física newtoniana.
3) Um relógio na superfície de um objeto imenso trabalhará mais lentamente do que um relógio idêntico livre no espaço.
4) Existem ondas gravitacionais, irradiando – se à velocidade da luz a partir de grandes massas que estão em aceleração.
Apesar de não parecer tão natural mas a relatividade apresenta uma certa influência na prática de nossa vida cotidiana. Como os GPS etc.

O que é a Teoria da Relatividade?


É a idéia mais brilhante de todos os tempos - e certamente também uma das menos compreendidas. Em 1905, o genial físico alemão Albert Einstein afirmou que tempo e espaço são relativos e estão profundamente entrelaçados. Parece complicado? Bem, a idéia é sofisticada, mas, ao contrário do que se pensa, a relatividade não é nenhum bicho-de-sete-cabeças. A principal sacada é enxergar o tempo como uma espécie de lugar onde a gente caminha. Mesmo que agora você esteja parado lendo a Mundo Estranho, você está se movendo - pelo menos, na dimensão do tempo. Afinal, os segundos estão passando, e isso significa que você se desloca pelo tempo como se estivesse em um trem que corre para o futuro em um ritmo constante. Até aí, nenhuma novidade bombástica. Mas Einstein também descobriu algo surreal ao constatar que esse "trem do tempo" pode ser acelerado ou freado. Ou seja, o tempo pode passar mais rápido para uns e mais devagar para outros. Quando um corpo está em movimento, o tempo passa mais lentamente para ele.
Se você estiver andando, por exemplo, as horas vão ser mais vagarosas para você do que para alguém que esteja parado. Mas, como as velocidades que vivenciamos no dia-a-dia são muito pequenas, a diferença na passagem do tempo é ínfima. Entretanto, se fosse possível passar um ano dentro de uma espaçonave que se desloca a 1,07 bilhão de km/h e depois retornar para a Terra, as pessoas que ficaram por aqui estariam dez anos mais velhas! Como elas estavam praticamente paradas em relação ao movimento da nave, o tempo passou dez vezes mais rápido para elas - mas isso do seu ponto de vista. Para os outros terráqueos, foi você quem teve a experiência de sentir o tempo passar mais devagar. Dessa forma, o tempo deixa de ser um valor universal e passa a ser relativo ao ponto de vista de cada um - daí vem o nome "Relatividade". Ainda de acordo com os estudos de Einstein, o tempo vai passando cada vez mais devagar até que se atinja a velocidade da luz, de 1,08 bilhão de km/h, o valor máximo possível no Universo.
A essa velocidade, ocorre o mais espantoso: o tempo simplesmente deixa de passar! É como se a velocidade do espaço (aquela do velocímetro da nave) retirasse tudo o que fosse possível da velocidade do tempo. No outro extremo, para quem está parado, a velocidade está toda concentrada na dimensão do tempo. "Einstein postulou isso baseado em experiências de outros físicos e trabalhou com as maravilhosas conseqüências desse fato", diz o físico Brian Greene, da Universidade de Columbia, nos Estados Unidos, autor do livro O Universo Elegante, um best seller que explica em linguagem simples as idéias do físico alemão. Mas as descobertas da Relatividade não param por aí. Ainda em 1905, Einstein concluiu que matéria e energia estavam tão entrelaçadas quanto espaço e tempo. Daí surgiu a célebre equação E = mc2 (energia = massa x a velocidade da luz ao quadrado), que revela que uma migalha de matéria pode gerar uma quantidade absurda de energia.
Por fim, em 1916, Einstein examinou a influência do espaço e do tempo na atração entre os corpos e redefiniu a gravidade - até então, a inquestionável física clássica de Isaac Newton (1642-1727) considerava apenas a ação da massa dos corpos. Sua Teoria da Relatividade, definida em uma frase dele mesmo, nos deixou mais próximos de "entender a mente de Deus".
Uma descoberta genialEinstein mostrou que espaço, tempo, massa e gravidade estão intimamente ligados
1 - Segundo o físico alemão Albert Einstein, tudo no Universo se move a uma velocidade distribuída entre as dimensões de tempo e espaço, como mostra o gráfico ao lado. Para um corpo parado, o tempo corre com velocidade máxima. Mas quando o corpo começa a se movimentar e ganha velocidade na dimensão do espaço, a velocidade do tempo diminui para ele, passando mais devagar. A 180 km/h, 30 segundos passam em 29,99999999999952 segundos. A 1,08 bilhão de km/h (a velocidade da luz), o tempo simplesmente não passa
2 - Uma conseqüência dessa alteração da velocidade do tempo é a contração no comprimento dos corpos. Segundo a Teoria da Relatividade Especial - a primeira parte da teoria de Einstein, elaborada em 1905 -, quanto mais veloz alguma coisa está, mais curta ela fica. Por exemplo: quem visse um carro se mover a 98% da velocidade da luz o enxergaria 80% mais curto do que se o observasse parado
3a - Na chamada Teoria Geral da Relatividade (a segunda parte do estudo, publicada em 1916), Einstein usou a constatação anterior para redefinir a gravidade. Isso pode ser demonstrado com um exemplo simples: neste tipo de brinquedo comum em parques de diversões, a rotação da máquina mantém as pessoas grudadas na parede pela força centrífuga, como se houvesse uma "gravidade artificial". No desenho, o brinquedo está girando e, enquanto isso, é medido com duas réguas (A e B)
3b - A régua "A" é usada para medir a circunferência do brinquedo, na direção em que ele gira. Como ela está em movimento, basta lembrar do item 2 para saber que ela fica mais curta. Já a régua "B" mede o raio, portanto não se movimenta e permanece com o tamanho normal. O incrível é que a medição da régua encurtada revela não um círculo plano, como o brinquedo parece ser, mas um círculo distorcido, curvado. Essa curvatura invisível gera a "gravidade artificial" que mantém as pessoas grudadas na parede do brinquedo. Na vida real, a diferença é que as massas dos corpos são mais importantes para criar a curvatura do que sua velocidade
4 - A gravidade real também funciona assim. O Sol curva tanto o espaço ao seu redor que mantém a Terra em sua órbita - como se ela estivesse "grudada na parede", lembrando o exemplo do brinquedo. Já a força que prende as pessoas ao chão é a curvatura criada pela Terra no espaço ao seu redor. Einstein também descobriu que, quanto maior a gravidade, mais lento é o ritmo da passagem do tempo. Por isso, ele chamou essa força de "curvatura no tecido espaço-tempo", idéia representada no desenho abaixo
5 - Uma aplicação prática da Relatividade é a calibragem dos satélites do GPS, que orientam aviões e navios. Pela Relatividade Especial, sabe-se que a velocidade de 14 mil km/h dos satélites faz seus relógios internos atrasarem 7 milionésimos de segundo por dia em relação aos relógios da Terra. Mas, segundo a Relatividade Geral, eles sentem menos a gravidade (pois estão a 20 mil km de altitude) e adiantam 45 milionésimos de segundo por dia. Somando as duas variáveis, dá um adiantamento de 38 milionésimos por dia, que precisa ser acertado no relógio do satélite. Portanto, se não fosse pela teoria de Einstein, o sistema acumularia um erro de localização de cerca de 10 quilômetros por dia

comentarios

.